The Parameterized Complexity of some Permutation Group Problems

نویسنده

  • Vikraman Arvind
چکیده

In this paper we study the parameterized complexity of two well-known permutation group problems which are NP-complete. • Given a permutation group G = 〈S〉 ≤ Sn and a parameter k, find a permutation π ∈ G such that |{i ∈ [n] | π(i) 6= i}| ≥ k. This generalizes the NP-complete problem of finding a fixed-point free permutation in G [CW10, Lub81] (this is the case when k = n). We show that this problem with parameter k is fixed parameter tractable. In the process, we give a simple deterministic polynomialtime algorithm for finding a fixed point free element in a transitive permutation group, answering an open question of Cameron [C11, CW10]. • Next we consider the problem of computing a base for a permutation group G = 〈S〉 ≤ Sn. A base for G is a subset B ⊆ [n] such that the subgroup of G that fixes B pointwise is trivial. This problem is known to be NP-complete [Bl92]. We show that it is fixed parameter tractable for the case of cyclic permutation groups and for permutation groups of constant orbit size. For more general classes of permutation groups we do not know whether the problem is in FPT or is W[1]-hard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized Complexity of Small Weight Automorphisms

We consider the PermCode problem to decide, given a representation of a permutation group G and a parameter k, whether there is a non-trivial element of G with support at most k. This problem generalizes several problems in the literature. We introduce a new method that allows to reduce the maximal orbit size of the group being considered while maintaining elements with small support in the gro...

متن کامل

The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs

In this paper we study the complexity of the following problems: 1. Given a colored graph X = (V, E, c), compute a minimum cardinality set of vertices S ⊂ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sn given by generators, i.e., a minimum cardinality subset S ⊂ [n] such that no nontrivia...

متن کامل

The Parameterized Complexity of Short Computation and Factorization

A completeness theory for parameterized computational complexity has been studied in a series of recent papers, and has been shown to have many applications in diverse problem domains including familiar graph-theoretic problems, VLSI layout, games, computational biology, cryptography, and computational learning [ADF,DEF,DF1-7,FH,FHW,FK]. We here study the parameterized complexity of two kinds o...

متن کامل

Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT

This survey reviews the basic notions of parameterized complexity, and describes some new approaches to designing FPT algorithms and problem reductions for graph problems.

متن کامل

A W[1]-Completeness Result for Generalized Permutation Pattern Matching

The NP-complete Permutation Pattern Matching problem asks whether a permutation P (the pattern) can be matched into a permutation T (the text). A matching is an order-preserving embedding of P into T . In the Generalized Permutation Pattern Matching problem one can additionally enforce that certain adjacent elements in the pattern must be mapped to adjacent elements in the text. This paper stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1301.0379  شماره 

صفحات  -

تاریخ انتشار 2013